b-Bit Minwise Hashing for Estimating Three-Way Similarities

نویسندگان

  • Ping Li
  • Arnd Christian König
  • Wenhao Gui
چکیده

Computing1 two-way and multi-way set similarities is a fundamental problem. This study focuses on estimating 3-way resemblance (Jaccard similarity) using b-bit minwise hashing. While traditional minwise hashing methods store each hashed value using 64 bits, b-bit minwise hashing only stores the lowest b bits (where b ≥ 2 for 3-way). The extension to 3-way similarity from the prior work on 2-way similarity is technically non-trivial. We develop the precise estimator which is accurate and very complicated; and we recommend a much simplified estimator suitable for sparse data. Our analysis shows that b-bit minwise hashing can normally achieve a 10 to 25-fold improvement in the storage space required for a given estimator accuracy of the 3-way resemblance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Estimators for Improving Minwise Hashing and b-Bit Minwise Hashing

Minwise hashing is the standard technique in the context of search and databases for efficiently estimating set (e.g., high-dimensional 0/1 vector) similarities. Recently, b-bit minwise hashing was proposed which significantly improves upon the original minwise hashing in practice by storing only the lowest b bits of each hashed value, as opposed to using 64 bits. b-bit hashing is particularly ...

متن کامل

b-Bit Minwise Hashing in Practice: Large-Scale Batch and Online Learning and Using GPUs for Fast Preprocessing with Simple Hash Functions

ABSTRACT Minwise hashing is a standard technique in the context of search for approximating set similarities. The recent work [27] demonstrated a potential use of b-bit minwise hashing [26] for batch learning on large data. However, several critical issues must be tackled before one can apply b-bit minwise hashing to the volumes of data often used industrial applications, especially in the cont...

متن کامل

b-Bit Minwise Hashing for Large-Scale Learning

Abstract Minwise hashing is a standard technique in the context of search for efficiently computing set similarities. The recent development of b-bit minwise hashing provides a substantial improvement by storing only the lowest b bits of each hashed value. In this paper, we demonstrate that b-bit minwise hashing can be naturally integrated with linear learning algorithms such as linear SVM and ...

متن کامل

One Permutation Hashing

Abstract Minwise hashing is a standard procedure in the context of search, for efficiently estimating set similarities in massive binary data such as text. Recently, b-bit minwise hashing has been applied to large-scale learning and sublinear time nearneighbor search. The major drawback of minwise hashing is the expensive preprocessing, as the method requires applying (e.g.,) k = 200 to 500 per...

متن کامل

One Permutation Hashing for Efficient Search and Learning

Minwise hashing is a standard procedure in the context of search, for efficiently estimating set similarities in massive binary data such as text. Recently, the method of b-bit minwise hashing has been applied to large-scale linear learning (e.g., linear SVM or logistic regression) and sublinear time near-neighbor search. The major drawback of minwise hashing is the expensive preprocessing cost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010